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The theory of linear magnetic birefringence of rare earth ions in crystals is extended here by
the contributions that represent a direct perturbing influence of the crystal field potential
surrounding the central ion. The basic assumptions of the theoretical model are the same as
in the previous analysis of second-order terms. The third-order contributions introduced
here break the free ionic system approximation, and they represent the impact due to con-
figuration interaction. The effective operators include the perturbing influence of the excita-
tions from the 4f shell to one-electron states of the same parity (as previously at the second
order), and in addition, the excitations to states of opposite parity. All contributing terms
are expressed by the effective operators that are defined within the perturbed function ap-
proach. The tensorial structure of these operators is discussed, and special attention is di-
rected to newly defined radial integrals. The values of all radial integrals that are necessary
for the third-order numerical analysis are presented in the case of all lanthanide ions.
Keywords: Rare earth ions; Lanthanides; Magnetic anisotropy; Polarizability tensor; Effective
tensor operators; Perturbation theory; Crystal field potential; Perturbed function approach.

A theoretical model of magnetic linear birefringence in rare-earth-doped
materials introduced in the previous paper1 (hereafter denoted as I) was
based on the second-order term of time-dependent perturbation theory ap-
plied to the description of the matter-radiation interaction. This formula-
tion was defined within the free ionic system approximation. In order to
break this approximation and include in the description the fact that the
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rare earth ion is indeed surrounded by ligands, a perturbing influence of
the existing crystal field is taken into account in a direct way. Thus the
standard Rayleigh–Schrödinger perturbation theory is applied to the follow-
ing hamiltonian

H = H0 + λPVCFQ ,

where H0 is a zeroth-order hamiltonian that describes the rare earth ion and
it is based on a single configuration approximation (H–F model), and the
crystal field potential VCF, taken as a perturbation, has a tensorial form
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CF = ∑ ∑ ( ) ( , )ϑ ϕ

with Bp
t defined as crystal field parameters.

A particular construction of the perturbing operator, which is accompa-
nied from both sides by the projection operators, prevents inclusion of the
same crystal field effects twice. Indeed, here only the inter-shell part of
these interactions is taken into account, and the diagonal part PVCFP associ-
ated with the space spanned by the functions of the ground configuration
4fN might be included within the zeroth-order hamiltonian if defined be-
yond the free ionic system approximation. The particular part of VCF in-
cluded in the present approach mixes the states of ground and excited con-
figurations of appropriate parity (Q is the orthogonal complement of P).
This construction of the perturbing operator reproduces the configuration
interactions via the crystal field potential, and its effect upon the compo-
nents of the polarizability tensor is the main aim of the present analysis.

THIRD-ORDER CRYSTAL FIELD APPROACH

The standard expression for the components of the polarizability tensor is
modified here by the terms that originate from the improvement of the de-
scription of the 4fN configuration. Instead of the zeroth-order wave func-
tions, as used in I, here the functions that are extended by the first-order
corrections due to crystal field potential are applied to the evaluation of ap-
propriate matrix elements. In the original expression for the polarizability
tensor, for each polarization ρ1ρ2, there is a sum of two products of matrix
elements that differ from each other by the order of operators (apart from
energy denominators that are different, see Eq. (1) of I). Thus inserting now
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into the matrix elements of the original formula the wavefunction in the
form

4fNΨ = ψ + λψ(1),

in general leads to two distinct terms contributing to the polarizability ten-
sor, namely
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where Xx are various states of intermediate (singly excited) configurations
X of opposite parity to the parity of configuration 4fN, and ψ(1) is the first-
order correction to the wavefunctions of 4fN configuration that is due to
crystal field potential. Using the standard Reyleigh–Schrödinger perturba-
tion theory these corrections are defined in the following way

ψ
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where the summation is over all excited configurations B (that belong to
Q), and over all their states b, and the energy denominator is the difference
of energies of states of 4fN and intermediate configurations B.

The two terms in Eqs (1) and (2) are distinguished by the different order
of operators in triple products of matrix elements (ψ(1) contains matrix ele-
ments of VCF), and therefore they are denoted by DDVCF and VCFDD. It is
seen that the position of the perturbing operator is interchanged in these
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expressions, and therefore the coupling schemes of tensor operators are dif-
ferent in each case. Indeed, in a symbolic way the situation is described by
the following products of matrix elements

α ψρ ρ1 2
4 41 1( ) | | | | | |( ) ( )DDV D Xx Xx D Bb Bb VN N

CF CFf f⇒ 〈 〉 〈 〉 〈 ψ〉

and

α ψρ ρ1 2
4 41 1( ) | | | | | |( ) ( )V DD V Bb Bb D Xx Xx DN N

CF CFf f⇒ 〈 〉 〈 〉 〈 ψ〉 ,

where the energy denominators (product of two in each case, since these
are the terms of the third order) are omitted for simplicity. The parity selec-
tion rules for the non-vanishing matrix elements require that

p(X) ≠ p(4fN) p(X) ≠ p(B) ⇒ p(B) = p(4fN) .

The latter conclusion means that only even parts of the crystal field poten-
tial are taken into account here, and therefore in the definition of VCFt is
even. Since all the operators in the matrix elements are one-particle objects,
the intermediate configurations Xx describe single excited configurations
4fN–1n′l′ for which, due to the parity conditions, l′ is even, and it denotes
one-electron states of d and g symmetries. The perturbing influence of
these excitations is taken into account at the second-order via the interac-
tion of the electric dipole operator, while here their impact is included
through the crystal field potential. In addition, the other set of excited con-
figurations taken into account at the third order via the crystal field poten-
tial, Bb, contains the excitations from the 4f shell to those one-electron
states that are of odd value, l′′ = p, f. In all cases the excitations to all dis-
crete and also continuum states of given symmetry have to be included.
Obviously this requirement makes the numerical calculations at least trou-
blesome, however, this problem is avoided in the present realization by
adopting the concept of perturbed function approach (see I). In this ap-
proach the problem of performing summations over the complete radial ba-
sis sets of one-electron states is replaced by a task of solving differential
equations for newly defined functions.

The general expressions for α ρ ρ1 2
(DDVCF) and α ρ ρ1 2

(VCFDD) presented in
Eqs (1) and (2) are too complex to be used directly for numerical evaluation
of the magnitude of the third-order contributions. Therefore, applying the
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so-called closure procedure (see I), the triple products of matrix elements,
including the energy denominators, are expressed in the terms of effective
operators.

In order to be able to perform summations over all quantum numbers of
x and b except the one-electron ones, nl, n′l′, n′′l′′ , it is assumed that H0 is
the Fock operator, and the zeroth-order problem is solved for the average
energy of configuration 4fN. While evaluating the energy of the excited
configurations B and X (also an average), the calculations are performed for
the frozen core orbitals. This procedure was also used previously, and it
might be regarded as a numerical realization of the approximations intro-
duced in the Judd–Ofelt theory of one-photon electric dipole transitions. In
fact, these approximations are crucial for the theoretical procedure, since
they allow to introduce the effective operators that reproduce the interac-
tions of a given physical mechanism by a new operator that acts only
within the 4fN configuration. From a formal point of view, for the first time
a concept of Judd–Ofelt theory2,3 has been applied to the description of
magnetic linear birefringence by Nekvasil and co-workers4; from a physical
point of view, the present analysis is the first attempt made to establish a
direct impact of the crystal field upon the magnetic linear birefringence.

As a consequence of the above assumptions, the energy denominators of
the third-order contributions are expressed now by a simple difference of
orbital energies of appropriate one-electron states. Finally, after coupling of
distinct tensor operators and using unit tensor operators, the third-order ef-
fective operator that determine the polarizability tensor has the following
form
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where the factor F of the effective operator contains all the coupling coeffi-
cients and additional parity requirements, namely
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where in general

[ ]Xx x x
±

′′ = ± −( , ; ) [ ( , )] ( )ρ ρ ω ρ ρ ξ ω1 2 1 21l l� �� δ

and ξ ω′l ( ) is an approximate energy factor introduced in I,
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In Eq. (4), through factor Xx
± , two cases for x = even(�x) and for x =

odd(�x
� ) are distinguished. These two parts of X are analogs of symmetric

and asymmetric contributions discussed at the second order, with the dif-
ference that here x is a summation index, and not a rank of effective opera-
tor. In fact, x is the rank resulting from a coupling of two electric dipole
tensor operators and, together with the rank of crystal field potential opera-
tor t in a triangle condition, it determines the rank k of effective operator of
Eq. (3). The sequence of couplings performed in the derivation of the final
expression is clearly presented by the 3j and 6j symbols of Eq. (4).

The radial term of the effective operator is defined by a single integral of
two perturbed functions

R rt t( ) ( )| | ( ) .′ ′′ = 〈 → ′ → ′′ 〉l l l lρ ρ1 4 4f f (5)

The perturbed function ρ1(4f → l′) originates from the interaction via the
electric dipole operator that is present in the original definition of the
polarizability tensor, and it is defined by Eq. (7) of I. This function contains
the impact due to all single excitations from 4f shell to all one-electron
states of d and g symmetry. The second in the integral and new in the pres-
ent approach, is the perturbed function ρt(4f → l′′ ) that represents the per-
turbing influence of the excited configurations 4fN–1n′′p and 4fN–1n′′ f taken
into account via the crystal field potential for all n′′ . From a formal point of
view these particular perturbed functions are defined in the same way as
the perturbed functions of the Judd–Ofelt theory. However, for the first
time here they are generated by an even part of crystal field potential
(therefore l′′ is odd), while those of the standard Judd–Ofelt approach origi-
nate from the interaction via the odd part of crystal field potential (and l′ is
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even); in fact, from a physical point of view both of these perturbed func-
tions are generated by the same perturbing mechanism.

The angular factor in Eq. (3), d1t(l′l′′ ), is responsible for the equivalence
between the spherical tensors and unit tensor operators, and it is defined
by the reduced matrix elements

d f1 1 1t tC C C( ) || || || || || |( ) ( ) ( )′ ′′ = 〈 ′〉 〈 ′ ′′〉 〈 ′′l l l l l l | .f 〉

The derivation of the effective operator form of the third-order contribu-
tion defined by Eq. (2) is not so straightforward. As mentioned before, this
expression differs from the previous one by the sequence of operators, and
therefore it requires coupling and re-coupling of various intermediate
ranks. However, making use of the equality between products of 3j symbols
and 6j symbols (see ref.5, problem 3-1; page 73) it is possible to obtain the
effective operator defined also by Eq. (3) with the exception of the phase
factor. In fact for the α(VDD) contributions factor Xx

− in Eq. (4) has to be re-
placed by Xx

+ and the whole expression in Eq. (3) has to be multiplied by
the phase factor of (–1)k. Taking these changes into account, both contribu-
tions are equal

α αρ ρ ρ ρ1 2 1 2
( ) ( )DDV VDD=

only far the following cases:

if ρ1 = ρ2 then k = even, x = even, and Xx
± = 2�x

if |ρ1| ≠ |ρ2| then k = odd, x = even, and Xx
± = 2�x

or
k = even, x = odd, and Xx

± = 2�x
� ξ ω′l ( )

otherwise the sum of both terms vanishes. Thus, the third-order contribu-
tions due to crystal field potential α ρ ρ1 2

(DDV + VDD) are determined by a
modified expression of Eq. (3), where the phase factor ( )− + +1 1 2ρ ρ k is re-
moved, and the factor F is changed by replacing Xx

− by Xx
± in Eq. (4) as dis-

cussed above.
Finally, when comparing the tensorial structure of second- and third-

order contributions it is seen that there are new selection rules for the non-
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vanishing matrix elements. Indeed, formally at the second order, the effec-
tive operator was of the rank 0,1,2 since it was determined from the cou-
pling of two vectors (operators of rank (1)). At the third order, it is derived
from the triangular conditions of Eq. (4) that the final rank k might be as
large as 6 if not limited by the rank of crystal field potential operator t. At
the same time it should be remembered also that the final rank k in both
cases, in second- and third-order contributions, has to satisfy the triangular
condition for the non-vanishing 3j symbol of Wigner–Eckart theorem ap-
plied to the evaluation of the matrix elements of operators in Eq. (3) and
Eq. (2) of I.

NUMERICAL ANALYSIS AND CONCLUSIONS

The angular factors of effective operators introduced here are the same for
all lanthanide ions, and only the relative importance of various terms asso-
ciated with the operators with different ranks requires their values to per-
form any comparison. The electronic structure of a rare earth ion is repre-
sented in this approach by the radial integrals that provide individual and
distinct properties of each ion to the model. Therefore the most interesting
part of numerical analysis is always focused on the newly defined radial
integrals.

As presented in I, the radial integrals of the effective operators of second
order are of the form 〈4f|r|ρ1(4f → d)〉 and 〈4f|r|ρ1(4f → g)〉 . In the case of
third-order terms, the radial integrals contain two perturbed functions.
Therefore it is interesting to compare and verify the effect resulting from a
substitution of the atomic orbital 4f in the second-order integral by per-
turbed function that describes the excitations from the 4f shell to one-
electron states of f symmetry. In Fig. 1 such a comparison is presented; the
values of third-order integrals 〈ρ1(4f → d)|r|ρ2(4f → f〉 are compared with the
second-order ones 〈ρ1(4f → d)|r|4f〉 and 〈ρ1(4f → g)|r|ρ2(4f → f〉 are compared
with 〈ρ1(4f → g)|r|4f〉 . It is seen from Fig. 1 that in spite the fact that the
third-order integrals are different from the second-order ones, their behav-
ior across the lanthanide series is very similar. Taking into account the defi-
nitions it is seen that these integrals are indeed different, since the atomic
orbital 4f of second-order term is replaced at the third order by the per-
turbed function that originates from the interactions via crystal field poten-
tial; this perturbed function represents all the single excitations from 4f to
excited orbitals of f symmetry. The perturbed functions through their form-
al definition as a linear combination of all first-order corrections due to a
certain perturbation do not have any physical interpretation. However, it

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

Magnetic Linear Birefringence in Rare Earth Systems 41



was concluded from numerical analysis of various kinds of perturbed func-
tions examined in the case of the theoretical description of spectroscopic
properties of rare earth ions in various hosts, that in general they behave as
the first excited one-electron state of the symmetry to which 4f electron is
promoted. Thus, it is expected also here that ρt(4f → f) behaves as the ex-
cited orbital 5f (the number of nodes, for example; for details see ref.6). This
atomic-like behavior of perturbed functions is then confirmed here as re-
flected by the changes of radial integrals as presented in Fig. 1.

In Fig. 2 the values of third-order integrals for different ranks of the ten-
sor operator that define the crystal field potential are compared. In order to
show on one plot the nature of their changes with the change of the rank
of perturbing operator, the values of 〈ρ1(4f → d)|r|ρt(4f → g〉 are scaled by
100 and 10 for t = 2 and 4. The most striking feature observed in the
changes of values of all radial integrals is their monotonic decrease with in-
creasing Z number; this property is repeated independently of the kind and
the number of perturbed functions involved (one or two) in the analyzed
integral.

In order to establish the hierarchy of important contributions to the
polarizability tensor, the angular factors of all effective operators also have
to be evaluated. This means that to demonstrate the dominant role of d-
excitations over g-excitations (see Fig. 3 in I), the scaled values of second-
order contributions presented in I have to be re-evaluated (in fact only mul-
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FIG. 1
Values of radial integrals R2(df ) (· · · · ·), R1(d) (–––––) and R2(gf) (– · – · –), R1(g) (– – – –) for
ions across the lanthanide series. � 〈4f – d|r|4f – f(2)〉, � 〈4f – d|r|4f〉, � 〈4f – g|r|4f – f(2)〉, � 〈4f –
g|r|4f〉
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tiplied by the contribution due to g-excitations). Actually, it is interesting
to compare at this point the importance of both excitations at second and
third order. In I the value of η = R1(d)/R1(g) (integrals of the second order)
decreases from 3.75 for Ce3+ to 1.79 for Lu3+; at the third order the ratio
of appropriate integrals associated with d- and g-excitations, Rt(df)/Rt(gf)
decreases from 4.6 to 2.5 for t = 2, and from 4.3 to 2.4 for t = 4, for Ce3+ and
Lu3+, respectively. Again it is seen then that independently of a physical
background of the terms of second- and third-order contributions, the d-
excitations are the most dominant ones. At the same time, however, as
expected by Kolmakova et al.7,8, also at the third order the excitations to
the states of g symmetry are not negligible. It should be pointed out that all
values of all radial integrals are evaluated for the complete radial basis sets
of one-electron states of given symmetry.

To find out the relative importance of second- and third-order terms test
calculations have been performed for a particular case of ρ1 = ρ2 = 0 to sim-
plify the analysis. For this particular case the effective operator of second
order has only one rank k = 2, due to the conditions for the non-vanishing
3j symbol of A in Eq. (3) of I. The situation is more complex in the case of
the third-order contributions, since they depend on the symmetry of the
environment of the rare earth ion. In order to compare the numerical re-
sults of ab initio nature, the contributing terms without the structural pa-
rameters are analyzed when possible. At the same time, the final rank of the
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FIG. 2
Comparison of the values of Rt(df) for all lanthanide ions; the values for t = 2 (–––––) and
4 (· · · · ·) are scaled by 100 and 10, respectively. � 〈4f – d|r|4f – f(2)〉 × 100, � 〈4f – d|r|4f – f(4)〉
× 10, � 〈4f – d|r|4f – f(6)〉

0 2 4 6 8 10 12 14
Number of 4f electrons

Ra
d

ia
l

in
te

g
ra

ls

500

400

300

200

100

0



effective operator in Eq. (3) is also chosen to have value k = 2. In this way it
is possible to compare just the factors that are state independent, since at
both orders the same matrix elements of U(2) is excluded.

The third-order contributions, α ρ ρ1 2

kq
p
tDDV B( , ), evaluated for a given rank

of crystal field potential have the form

[ ]α 00
20

0
2

0
2 1 2 2

010 40988( , ) .DDV B B R R U= × − (df) + 5.4650 (gf) ( )2

[ ]α 00
20

0
4

0
4 1 4 410 33845 45126( , ) . .DDV B B R R U= × − −− (df) (gf) 0

2( ) .

In this particular case, since k = even and x = even, then in order to obtain
the whole component due to the crystal field potential α 00

20 (DDV + VDD),
the values above have to be multiplied by a factor of 2. It should be pointed
out that the above expressions are valid for any of the lanthanide ions, and
in order to evaluate the numerical value of this contribution, the radial
integrals for certain ion have to be applied. It is obvious, however, that
these contributions are behaving across the lanthanide series in the same
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TABLE I
Crystal-structure-independent contributions to the components of polarizability tensor origi-
nated at the third order from a term DDV (for details see the main text)

Ion t α(d) α(g) α(d) + α(g) κd
a

Ce3+ 2 18.20 5.25 23.45 78

4 –130.68 –40.57 –171.25 76

Eu3+ 2 3.28 1.42 4.70 70

4 –19.02 –8.66 –27.68 69

Gd3+ 2 2.58 1.15 3.73 69

4 –14.35 –6.81 –21.16 68

Tb3+ 2 2.05 0.93 2.98 69

4 –11.07 –5.42 –16.49 67

Yb3+ 2 0.66 0.41 1.07 62

4 –3.11 –2.08 –5.19 60

a κd = {α(d)/(α(d) + α(g))} × 100%.



way as their radial integrals, since the numerical factors, as written above,
are common for all ions.

In Table I the crystal-structure-independent contributions to the polar-
izability tensor are presented for two complementary systems of Ce3+(4f1)
and Yb3+(4f13), and for the half-filled shell system Gd3+(4f7) with two neigh-
bouring ions Eu3+(4f6) and Tb3+(4f8). The symbols used in this Table denote
particular components, namely α α( ) ( )′ ≡ ′l l00

20 f for l′ = d and g, and in the
last column the relative importance of d-excitations over g-excitations is
presented in percentages. It is seen from this Table that from the very be-
ginning to the very end of the lanthanide series the d-excitations are domi-
nant and their contributions for various ions are not smaller than 60% rela-
tive to the contributions caused by g-excitations.

In the case of ions which are characterized by a one electron (hole) in a 4f
shell, the effect of the perturbing influence of the crystal field potential is
pure in the sense that it is not masked by for example, correlation effects
that are very strong in these systems. For two ions, Ce3+ and Yb3+, contribu-
tions to the component of the polarizability tensor associated with the unit
tensor operator U(2), and originated from VDD and DVV, are defined up to
the third order in the following way

for Ce3+

α 00
20

0
2

0
4092 468 3426= − + −. . .B B

for Yb3+

α 00
20

0
2

0
4012 0 21 104= − + −. . . ,B B

where the first value represents the contribution of the second order, and
the following ones (those multiplied by the structural parameters) are from
the third order.

These two expressions are valid for all symmetries of the environment,
since no assumptions are made on the magnitude of the crystal field pa-
rameters nor even on the symmetry of the environment. This is also a rea-
son that the numerical results presented here are the results of ab initio na-
ture. At the moment of using the values of appropriate crystal field parame-
ters, the calculations are becoming semiempirical, since the parameters are
usually evaluated from a fitting procedure. Furthermore, these expressions
are also valid for any electronic state of certain ion. Actually, in order to
evaluate the value of the component of polarizability tensor, a host has to
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be chosen, crystal field parameters have to be known, and in addition the
expressions above have to be multiplied by the value of matrix elements of
U(2) between appropriate electronic states.

In general, it is demonstrated here that the polarizability tensor depends
directly on the strength of the crystal field potential, which is represented
by the crystal field parameters. In addition a change of selection rules for
the non-vanishing contributions of the third order makes a theoretical mo-
del of magnetic linear birefringence more sensitive to the properties of elec-
tronic structure of the lanthanide ion.
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